X^2+y^2=144/81=1

Simple and best practice solution for X^2+y^2=144/81=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+y^2=144/81=1 equation:



X^2+X^2=144/81=1
We move all terms to the left:
X^2+X^2-(144/81)=0
We add all the numbers together, and all the variables
X^2+X^2-(+144/81)=0
We add all the numbers together, and all the variables
2X^2-(+144/81)=0
We get rid of parentheses
2X^2-144/81=0
We multiply all the terms by the denominator
2X^2*81-144=0
Wy multiply elements
162X^2-144=0
a = 162; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·162·(-144)
Δ = 93312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{93312}=\sqrt{46656*2}=\sqrt{46656}*\sqrt{2}=216\sqrt{2}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-216\sqrt{2}}{2*162}=\frac{0-216\sqrt{2}}{324} =-\frac{216\sqrt{2}}{324} =-\frac{2\sqrt{2}}{3} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+216\sqrt{2}}{2*162}=\frac{0+216\sqrt{2}}{324} =\frac{216\sqrt{2}}{324} =\frac{2\sqrt{2}}{3} $

See similar equations:

| 5x+12/3=4x-3/2 | | 186=6(5x+1) | | 5(2v-2)=-90 | | -2x+13-8x=-17 | | 5-x+4=3x+6 | | 16.53=3g+3.69 | | |2x-1|=|4x+9| | | 1/2(4x+6)-2=5X+9 | | -8=8x-4-4x | | 3x+17=−55 | | 5=-y-21 | | -16t2+46t+6=0 | | 0=-16t2+46t+6. | | 14+5p=-p | | 3/2=t=1/2 | | 6w=-7.6 | | 1/3y+4=10 | | -(6x-2)=-10 | | b-3/6=5/6 | | (-8-3x=11)/2 | | 10x-12x=10x-60 | | -8-3x=11/2 | | 7=4x+5x+7 | | 2n-5=2(n-2.5 | | 7=4x+5x+17 | | -2(3x-2)-5x+3=-2 | | 7/3=6x-6 | | 100t+25=50 | | 7(7c+1)-5=2 | | x/x-8=24/20 | | 14x-8=(9x+2)+5 | | 8x+11x-7=145 |

Equations solver categories